
Overview of the

Secure Notifications Tool

Decentralised Citizens ENgagement Technologies
Specific Targeted Research Project Collective Awareness Platforms

Creative Commons

Attribution-NonCommercial-

ShareAlike 4.0 International

License	

The work leading to this publication has

received funding from the European Union’s

Seventh Framework Programme (FP7/2007 -

2013) under grant agreement n° 610349.

The content of this report reflects only the

author’s view and that the Commission is not

responsible for any use that may be made of

the information it contains. 	

FP7 - CAPS

Project no. 610349

D-CENT

Decentralised Citizens

ENgagement Technologies

Lead beneficiary: Thoughtworks

D5.6 Overview of the Secure

Notifications Tool

October 2015

Version Number: 1

Authors:

John Cowie

Editors and reviewers:

Jaakko Korhonen

Pablo Aragón	

FP7 – CAPS - 2013 D-CENT D5.6 Overview of the Secure Notifications
Tool V1

Page 2 of 23

Contents

Executive Summary ... 3

Application Repositories .. 3

Open Standards .. 4

Platform Integration .. 4

High Level Feature Overview ... 5

1. Viewing Activity Feed .. 5

2. User sign-in .. 7

3. Asynchronous Feed Updates ... 8

4. Objective8 Integration ... 9

5. OpenAhjo Integration ... 9

6. Feed customisation ... 10

7. Feed pagination .. 11

8. Activity Stream signing ... 13

Architectural Design .. 15

Usage of Open Standards ... 17

ActivityStreams 2.0 .. 17

JSON Web Signature (JWS) .. 18

OpenID Connect ... 18

Technology Rationale .. 18

Security ... 19

Deployment ... 19

Database Design ... 20

Mongo Collections ... 20

Testing ... 21

Features In Development ... 22

JavaScript loading of older activities .. 22

Mooncake ‘locked-down’ mode ... 22

Activity Streams 2.0 ... 22

Integration .. 22

Future Work .. 22

References .. 23

FP7 – CAPS - 2013 D-CENT D5.6 Overview of the Secure Notifications
Tool V1

Page 3 of 23

Executive Summary

The Secure Notifications tool is a constituent piece of the development of task T5.1, a task to
develop a suite of tools that enable digital democratic functions such as collaborative policy making,
large-scale deliberation and voting.

The motivation for the development of a secure notifications tool as part of the D-CENT platform is
to allow users to quickly view activities taking place on other parts of the platform. These activities
would include actions such as votes, transactions, correspondence, or edits to documents. The
hypothesis is that delivering these notifications to users will increase participation with the platform
by highlighting opportunities to engage, respond and collaborate.

The tool has been designed to incorporate open standards that will allow easy integration of other
existing and future tools, both inside and outside of the D-CENT platform. It has also been designed
to support the verification of the integrity (and therefore authenticity) of notifications received,
through cryptographic means.

User discovery and messaging has not been developed as part of the notifications application. Well
maintained, existing open-source messaging solutions (such as Mattermost [1]) are available. It is felt
that, where possible, the use and promotion of existing open source solutions is more responsible
than building duplicates.

In addition to the Secure Notifications tool, two other applications were developed to support the
integration of this tool into the D-CENT platform. The first application is a notifications server that
can be deployed alongside other applications in the platform to assist with the storage and publishing
of notifications. The second application is an adapter to convert open data from the City of Helsinki
into a supported notifications format.

Appl icat ion Repositor ies

All the software developed under the D-CENT umbrella is open-source. All of the code is
developed under version-control using Git [2], and hosted on the github site. Details of each code
repository is listed below.

Mooncake

Mooncake is the project title for the secure notifications tool, and will be the term used to refer to
the tool for the remainder of this document.

The code is available at: https://github.com/ThoughtWorksInc/mooncakeA demonstration version of
the app is hosted at: https://mooncake.dcentproject.eu

Coracle

Coracle is the project title for the notifications server.

The code is available at: https://github.com/ThoughtWorksInc/coracle

FP7 – CAPS - 2013 D-CENT D5.6 Overview of the Secure Notifications
Tool V1

Page 4 of 23

HelsinkiActivityStreams

The HelsinkiActivityStreams project is the adapter to transform data published by Helsinki City
Council into notifications that can be consumed by Mooncake.

The code is available at: https://github.com/ThoughtWorksInc/HelsinkiActivityStream

Open Standards
Mooncake implements the following open standards:

Activity Streams 2.0

The Activity Streams 2.0 [3] specification () is currently being defined by W3C [4] as a standard for
providing semantic descriptions of user actions on social media platforms. It incorporates the JSON-
LD (JSON for Linking Data) format. Activity Streams 2.0 was chosen as the data format for
notifications in the D-CENT platform. Adoption of this standard in this piece of software creates
the potential for promoting and refining the standard to encourage further use in the open source
community, and therefore facilitate integration with future components that provide other digital
social functions.

JSON Web Signatures (JWS)

JWS [5] is a standard for signing content. The output is a base64 encoded message separated by
periods into 3 parts: a header, the body, and the signature. The signature is generated by applying an
asymmetric hash algorithm to the body of the message, combined with the private key of the
message publisher. The message publisher’s corresponding public key is used by a consumer to
verify the message signature.

OpenID Connect

The OpenID Connect [6] standard is an industry standard authentication protocol. It adds another
layer to the OAuth2 authentication protocol. When successfully issuing an authorisation token to
the client, the user’s details are signed using the JWS standard discussed above.

Platform Integrat ion

The open standards above are used by Mooncake to integrate with existing tools in the D-CENT
platform as well as an external API. These are:

Stonecutter

Stonecutter [7] is the single sign-on application developed as part of T5.1 and documented in
deliverable D5.4. Mooncake integrates with Stonecutter to authenticate users, using OpenID
Connect.

FP7 – CAPS - 2013 D-CENT D5.6 Overview of the Secure Notifications
Tool V1

Page 5 of 23

Objective8

Objective8 [8] is the policy-drafting tool developed as part of T5.1 and documented in deliverable
D5.3. Objective8 publishes notifications to Mooncake using the Activity Streams 2.0 and JWS
standards.

OpenAhjo
The OpenAhjo API [9] is an API external to the D-CENT platform and maintained by the City
of Helsinki. Notifications are published to Mooncake with the use of the
HelsinkiActivityStreams adapter.

High Level Feature Overview

1. Viewing Activity Feed
2. User sign-in
3. Asynchronous Feed updates
4. Objective8 Integration
5. OpenAhjo Integration
6. Feed customisation
7. Feed pagination
8. Activity Stream signing

1 . V iewing Act iv ity Feed

Feature definition: Users can view a feed of activities from AS2 endpoints.

User Story:

As a Mooncake user

I want to view a feed of activities

So that I can discover activity taking place on other connected applications.

Description: Users are shown activities in a single feed in descending order chronological order.
Activity icons are colour coded by the source they were retrieved from. The time the activity was
published is converted into a human-friendly format (e.g. 10 minutes ago). Activity sources are
described in a configuration file.

Technical Implementation: Activities are loaded from JSON retrieved over HTTP. The activity
sources are configured in a YAML file with the URL of the published activity stream. For the
implementation of this story, HTTP requests are made to the activity sources each time the feed
page is loaded. Asynchronous activity loading was completed in a later story (see 3).

Screenshots:

FP7 – CAPS - 2013 D-CENT D5.6 Overview of the Secure Notifications
Tool V1

Page 6 of 23

Figure 1:Screenshot of feed

FP7 – CAPS - 2013 D-CENT D5.6 Overview of the Secure Notifications
Tool V1

Page 7 of 23

2. User s ign-in

Feature definition: Users can sign in to Mooncake with their Stonecutter (OAuth Server)
account.

User Story:

As a Mooncake user

I want to sign in with Stonecutter

So that I can manage my feed

Description: If users are not signed in then they are taken to the login page and can click to sign-in
with their D-CENT account. If signing in for the first time they are then asked to create a
Mooncake account by choosing a username. Signed-in users are able to sign out of their account by
clicking the sign-out icon, and their session is terminated.

Technical Implementation: Mooncake integrates with Stonecutter using the OpenID Connect
protocol. This interaction is described in detail in deliverable D5.4. Once a user is successfully
signed in and has created an account, their account details are saved in MongoDB.

Screenshots:

Figure 2: Screenshot of Mooncake sign-in page

FP7 – CAPS - 2013 D-CENT D5.6 Overview of the Secure Notifications
Tool V1

Page 8 of 23

Figure 3: Screenshot of account creation page

3 . Asynchronous Feed Updates

Feature definition: Activity sources are polled periodically to retrieve new activities.

User Story:

As an activity stream publisher

I don’t want an HTTP request to be made to my activity stream each time a feed page is loaded

So that the load on my server is reduced

Description:

Activities are requested from the configured Activity Stream sources periodically. The time period
can be configured when the application is deployed. When the feed is requested by a user, the
activities are loaded from the database.

Technical Implementation: A thread is created when the application starts to asynchronously
poll the activity stream source URLs. When the activities are loaded they are stored in MongoDB.
The timestamp of the most recently stored activity is also stored for each source. Each subsequent
request to the activity stream sources uses this stored timestamp to query the API for new
activities.

FP7 – CAPS - 2013 D-CENT D5.6 Overview of the Secure Notifications
Tool V1

Page 9 of 23

4. Ob ject ive8 Integrat ion

Feature definition: When users perform activities in Objective8, notifications of these activities
are displayed in the Mooncake feed.

User Story:

As a user of the D-CENT platform

I want to receive notifications in Mooncake when actions are performed in Objective8

So that I can quickly get up-to-date with the status of the policy drafts.

Description: Objective8 publishes an activity stream JSON API with activities for the creation of
objectives and the addition of questions to the objectives.

Technical Implementation: For this story an activity stream utility (Coracle) was created to
allow applications to post activities and surface a queryable API endpoint. This Activity Stream is
deployed alongside Objective8 and stores activities into MongoDB. Objective8 was updated to post
activities to this utility when objectives and questions are created by users.

Screenshots:

Figure 4: Screenshot of results from the Objective8 Activity Stream API

5. OpenAhjo Integrat ion

Feature definition: When Helsinki City Council publishes information about council decisions
notifications of these decisions are displayed in the feed.

User Story:

As a Helsinki Citizen

I want to receive notifications in Mooncake when decisions are added to the OpenAhjo API

FP7 – CAPS - 2013 D-CENT D5.6 Overview of the Secure Notifications
Tool V1

Page 10 of 23

So that I can keep up-to-date with decisions that my city council are making

Description: The Helsinki Activity Streams utility was created to poll the OpenAhjo API for
decision information and then store these activities in a database and surface them with a queryable
API that is compatible with Mooncake. The OpenAhjo API does not use the Activity Streams 2.0
format, so the utility also maps the data from the original format to AS2.

Technical Implementation: The mapping utility makes periodic asynchronous HTTP requests to
the Open Ahjo API, converts the results to the AS2 format and then pushes them to an instance of
Coracle (where they are stored in MongoDB).

Screenshots:

Figure 5: Screenshot of results from the HelsinkiActivityStream API

6. Feed customisat ion

Feature definition: Users can configure which types of activities are displayed in their feed.

User Story:

As a Mooncake user

I want to be able to configure which activities are shown

So that I only view the types of activities that I am interested in.

Description: Users can click the settings icon to be taken to a page where they can select or
deselect which types of activities are shown in their feed. If JavaScript is enabled then users are also
able to select or deselect all types for a given activity stream source.

Technical Implementation: The users preferences are sent with an HTTP post to the backend,
and stored in their account record in MongoDB. When retrieving the activities to display in the
feed, the user’s preferences are used to construct the query and select the required activities from
the database.

FP7 – CAPS - 2013 D-CENT D5.6 Overview of the Secure Notifications
Tool V1

Page 11 of 23

Screenshots:

Figure 6: Screenshot of feed customisation page

7 . Feed paginat ion

Feature definition: The user is only shown the most recent results in the feed, and can then
navigate between pages of results to view older activities.

User Story:

As a Mooncake user

I only want to view older results if I choose to

So that the feed loads more quickly

FP7 – CAPS - 2013 D-CENT D5.6 Overview of the Secure Notifications
Tool V1

Page 12 of 23

Description: The most recent 50 activities are shown to the user on the feed page. At the bottom
of the feed a button is presented to the user to navigate to a page of the 50 preceding activities. On
pages other than the first and last, the user is presented with buttons to navigate forwards and
backwards in time. On the last page the user is only shown a button to go forward to newer
results.

Technical Implementation: The feed pages are retrieved by supplying a page-number query
parameter to the server side. The required results are retrieved from the database using MongoDB
querying syntax to order and chunk the activities. If the query parameter supplied is invalid the user
is presented with a 404 page.

Screenshots:

Figure 7: Screenshot of feed with pagination buttons

FP7 – CAPS - 2013 D-CENT D5.6 Overview of the Secure Notifications
Tool V1

Page 13 of 23

8. Act iv ity Stream signing

Feature definition: Activities are signed using the JWS (JSON Web Signature) standard and their
signatures are verified by Mooncake.

User Story:

As a user of Mooncake

I want activities to be signed in transit between Activity Stream sources and Mooncake

So that I can be sure of the integrity of the notifications.

Description: Coracle supports the signing of the results exposed in the API. Mooncake verifies the
signature when retrieving the activities, and stores the status of the signature (i.e. signed or
unsigned) when storing the activities. A visual cue is added to messages in the feed that are unsigned
or were unsuccessfully verified, along with an explanation, to indicate to the user that the integrity
of the notification is not assured.

Technical Implementation: Coracle was updated to encode and sign the messages using the JWS
standard. The jose4j Java library [10] was used to create the signatures. Coracle also generates a
public/private key pair on startup, and exposes the public key at another endpoint that is linked to in
the JSON result. Mooncake uses the jose4j library to decode the result and verify the signature.
The status of the verification is stored in the database in the activity document. This status is
checked to determine whether to render a warning to the user.

Screenshots:

Figure 8: Screenshot of JWS signed activities

FP7 – CAPS - 2013 D-CENT D5.6 Overview of the Secure Notifications
Tool V1

Page 14 of 23

Figure 9: Screenshot of activities with warnings indicating signature verification failure

FP7 – CAPS - 2013 D-CENT D5.6 Overview of the Secure Notifications
Tool V1

Page 15 of 23

Architectural Design

Figure 10: Application architecture

FP7 – CAPS - 2013 D-CENT D5.6 Overview of the Secure Notifications
Tool V1

Page 16 of 23

Figure 11: Notifications server architecture

Figure 12: Platform architecture overview

FP7 – CAPS - 2013 D-CENT D5.6 Overview of the Secure Notifications
Tool V1

Page 17 of 23

Usage of Open Standards

Act iv ityStreams 2 .0

Some initial AS2 types have defined for both Objective8 and the OpenAhjo API as a proof of
concept. Future work will include defining vocabulary for a greater number of types, so that a larger
range of actions in the D-CENT platform can produce notifications that are displayed in Mooncake.

Ob ject ive8 Types

Objective Creation:
{
 object: {
 url: <objective-url>,
 content: <objective-content>,
 displayName: <objective-title>,
 @type: "Objective"
 },
 actor: {
 displayName: <username>,
 @type: "Person"
 },
 published: <published-timestamp>,
 @type: "Create",
 @context: "http://www.w3.org/ns/activitystreams"
}

Question Addition

{
 object: {
 object: {
 displayName: <related-objective-title>,
 @type: "Objective"
 },
 url: <question-url>,
 displayName: <question-content>,
 @type: "Objective Question"
 },
 actor: {
 displayName: <username>,
 @type: "Person"
 },
 published: <published-timestamp>,
 @type: "Question",
 @context: "http://www.w3.org/ns/activitystreams"
}

FP7 – CAPS - 2013 D-CENT D5.6 Overview of the Secure Notifications
Tool V1

Page 18 of 23

OpenAh jo Types

Decision

{
 actor: {
 displayName: <decision-making-group>,
 @type: "Group",
 @id: <group-url>
 },
 object: {
 displayName: <decision-title>,
 content: <decision-content,
 @type: "Content",
 @id: <issue-url>,
 url: <decision-url>
 },
 target: { displayName: <parent-issue-display-name>,
 content: <parent-issue-description>,
 @type: "Content",
 @id: <issue-id>
 },
 published: <published-timestamp>,
 @type: "Add",
 @context: "http://www.w3.org/ns/activitystreams",
}

JSON Web S ignature (JWS)

The hash algorithm chosen for generating the signature for activities is RSASSA-PKCS-v1_5 using
SHA-256 hash. This algorithm recommended by the JavaScript Object Signing and Encryption (JOSE)
Working Group. The public key is published by Coracle as a JSON Web Key (JWK) [11].

OpenID Connect

Mooncake currently integrates with Stonecutter to authenticate users. The authentication flow
between Stonecutter and client applications is documented in deliverable D5.4.

Technology Rat ionale

Clojure [12]:

• JVM-based language, allowing for familiar deployment
• Expressive dynamically-typed language with an emphasis on high-quality code principles such

as immutability by default
• Strong and growing open-source community
• Easy Java interoperation, enabling use of large body of existing Java libraries
• Good level of experience with the ThoughtWorks team, allowing the team to deliver

features quickly and at a high-level of quality

FP7 – CAPS - 2013 D-CENT D5.6 Overview of the Secure Notifications
Tool V1

Page 19 of 23

MongoDB [13]:

• High level of adoption in industry, so well supported
• Shallow initial learning curve
• Easy to deploy
• Designed for scalability and resiliency
• JSON document store makes it a convenient choice for storing JSON activities

Sass [14]:

• More powerful syntax for producing CSS
• Allows removal of duplication in CSS with variables

ClojureScript [15]:

• Performance of JavaScript improved with Clojure’s persistent data structures
• Allows cross-compilation of Clojure code to both client and server-side
• Emphasis on immutability leads to simpler, more robust client-side code

Python [16] (Helsinki Activity Stream mapper):

• High level of adoption with developers in Helsinki

Secur ity
All the applications are deployed with TLS certificates (HTTPS) to ensure encryption of traffic
between nodes and between servers and clients (browsers).

Activities are signed to ensure data-integrity (see preceding section on JWS).

Stonecutter is used for authenticating users to Mooncake. Delegating user sign-in to Stonecutter
ensures that a minimal amount of personal user data is stored in Mooncake.

The OWasp Top Ten security [17] guidelines were reviewed and followed. In particular Cross-Site
Request Forgery was mitigated with the use of session-based CSRF tokens.

Deployment
A demonstration version of Mooncake is deployed to a server located in London provided by
DigitalOcean [18] (a cloud-hosting service). The app is deployed using a combination of Ansible [19]
and Docker [20]. Ansible is an automated deployment and configuration tool, and is used to
provision the Digital Ocean environment with application dependencies. Docker containers within
the virtual environment are used to host the application and the database. Each time the application
is updated a new version is uploaded to the server and deployed into a docker container. The
Ansible provisioning scripts are included in the code repository. The tools in the D-CENT platform
are designed to be self-hosted - organisations are able to use the deployment code provided to host
the applications on a server of their choosing.

FP7 – CAPS - 2013 D-CENT D5.6 Overview of the Secure Notifications
Tool V1

Page 20 of 23

A Docker image that contains Coracle is uploaded to DockerHub [21] as part of the Coracle
Continuous Integration pipeline. DockerHub is a cloud-hosted repository for Docker images.
The image can be pulled from DockerHub and run alongside other applications (such as
Objective8) as part of the deployment process.

Database Design
MongoDB is a logical choice for storing activities, as it is schema-less and thus supports storing
documents of different shapes (i.e. activities of different types) in the same collection. It also stores
data in the BSON (Binary JSON) data format, which works well for JSON activities. Three different
MongoDB collections are used in Mooncake and are described below.

Mongo Col lect ions

act iv i ty

Activities retrieved from the AS2 sources are stored as documents in the activity collection, with
the addition of an activity-src field that indicates which AS2 source the activity was retrieved
from, and a signed field that indicates whether the signature of the activity was successfully
verified.

act iv i tyMetadata

The activityMetadata collection stores details of the timestamp of the most recently retrieved
activity for a given AS2 source, along with an enumeration of types that have so far been retrieved
from the source.

The format of an activityMetadata document is:

{
 "_id" : <document-id>,
 "activity-src" : <activity-src-id>,
 "latest-activity-datetime" : <timestamp>,
 "activity-types" : <list-of-type-ids>
}

For example:

{
 "_id" : ObjectId("1234"),
 "activity-src" : "objective8",
 "latest-activity-datetime" : "2015-10-27T10:13:41.182Z",
 "activity-types" : ["Create", "Question"]
}

FP7 – CAPS - 2013 D-CENT D5.6 Overview of the Secure Notifications
Tool V1

Page 21 of 23

user

The user collection stores details of a user’s mooncake account, along with their feed preferences.

The format of a user document is:

{
 "_id" : <document-id>,
 "auth-provider-user-id" : <stonecutter-account-id>,
 "username" : <mooncake-username>,
 "feed-settings" : <mapping-of-activity-src-to-type>
}

An example of a user document is:

{
 "_id" : ObjectId("1234")
 "auth-provider-user-id" : 1234,
 "username" : "userA",
 "feed-settings" : {
 "objective8" : {
 "types" : [{ "id" : "Create", "selected" : true },
 { "id" : "Question", "selected" : true }]
 },
 "OpenAhjo" : {
 "types" : [{ "id" : "Add", "selected" : true }]
 }
}

Testing
The development team adopted test-driven development (TDD) as a standard practise. Unit tests
were written before implementing the corresponding features to ensure the testability of the code
and protect against regression of the feature set.

In addition higher level automated tests were written. These included both tests of the integration
of different modules of the code, and end-to-end automated browser tests.

The team also practised Continuous Integration (CI) and Continuous Delivery (CD). SnapCI [22] is
a cloud-hosted tool used by the team for CI. Each time a commit is pushed to the code repository,
the full automated test suite is run. If the tests pass, the application is then automatically redeployed
to a staging environment where the application can be manually tested for further quality assurance.

FP7 – CAPS - 2013 D-CENT D5.6 Overview of the Secure Notifications
Tool V1

Page 22 of 23

Features In Development
The following are details of Stonecutter features currently being analysed and developed:

JavaScr ipt loading of o lder act iv it ies

Users will be able to load older notifications in their feed without refreshing the page. This will be
done with AJAX requests to the server.

Mooncake ‘ locked-down’ mode

Administrators of Mooncake will be able to configure the application to run in a locked-down mode
where only users that have been marked as trusted by the administrator of Stonecutter will be able
to access the application.

Act iv ity Streams 2 .0

The orderedCollection AS2 type for wrapping collections of activities will be used in the published
ActivityStream APIs.

The palette of mappings between Objective8 actions and AS2 types will be extended.

Integrat ion

AS2 types will be defined for Freecoin (another tool in the D-CENT platform, described by work
package D5.5). Freecoin will be integrated with Mooncake by installing an instance of Coracle for
alongside the application.

Future Work

Some future possible developments that have been identified are:

• Indexing the activities in a search tool (such as ElasticSearch [23]) to allow users to search
through activities.

• Integration with Hackpad [24] and/or Objective8 in such a way that users are able to create
a collaborative document to respond to notifications.

• Integration with an open-source messaging service such as Mattermost
• The launch of a pilot of Mooncake with users in Helsinki.

FP7 – CAPS - 2013 D-CENT D5.6 Overview of the Secure Notifications
Tool V1

Page 23 of 23

References

1. http://www.mattermost.org
2. https://github.com
3. http://www.w3.org/TR/activitystreams-core
4. http://www.w3.org
5. https://tools.ietf.org/html/draft-ietf-jose-json-web-signature-41
6. http://openid.net/connect
7. https://github.com/ThoughtWorksInc/stonecutter
8. https://github.com/ThoughtWorksInc/objective8
9. http://dev.hel.fi/apis/openahjo
10. https://bitbucket.org/b_c/jose4j/wiki/Home
11. http://tools.ietf.org/html/rfc7517
12. http://clojure.org
13. https://www.mongodb.org
14. http://sass-lang.com
15. https://github.com/clojure/clojurescript
16. https://www.python.org
17. https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
18. https://www.digitalocean.com
19. http://www.ansible.com
20. https://www.docker.com
21. https://hub.docker.com/r/dcent/coracle
22. https://snap-ci.com
23. https://www.elastic.co
24. https://hackpad.com

